Laboratory Manual to the Course Microprocessors (CENG 329)

EXPERIMENT 7

ÇANKAYA UNIVERSITY

COMPUTER ENGINEERING DEPARTMENT

EXPERIMENT 7
DIGITAL SIGNAL PROCESSORS.

USING Z8 ENCORE TIMERS.

OBJECTIVE

Learning of four 16-bit reloadable timers that can be used for timing/counting events or for motor control operations. These timers provide a 16-bit programmable reload counter and operate in One-Shot, Continuous, Gated, Capture, Compare, Capture and Compare, and PWM modes. Analisys of properties of Watchdog Timer to restart microcontroller in case of program time-out.

1. THEORY

The 64K Series products contain up to four 16-bit reloadable timers that can be used for timing, event counting, or generation of pulse width modulated (PWM) signals. The timers’ features include:

• 16-bit reload counter

• Programmable prescaler with prescale values from 1 to 128

• PWM output generation

• Capture and compare capability

• External input pin for timer input, clock gating, or capture signal. External input pin signal frequency is limited to a maximum of one-fourth the system clock frequency.

• Timer output pin

• Timer interrupt

In addition to the timers described in this chapter, the Baud Rate Generators for any unused UART, SPI, or I2C peripherals may also be used to provide basic timing functionality. For information on using the Baud Rate Generators as timers, see the respective serial communication peripheral.

1.1. Architecture
Figure 1 illustrates the architecture of the timers.

[image: image1.png]I Timer Block |
Data i Timer I
Bus 1 Control |
| |
Block i |
Control
I 16-Bit ™ Interrupt, | Timer
| Reload Register e T interrupt
i g I
5 Timer Output
Clock] 1681 Counter | —>| | ot
Timer | win Prescaler | | I
Input .
i e |
| g I
Gate I3
T ot 165t 8 I
1 Pamicompare | | 1
capture
1 input I

Figure 1. Timer Block Diagram
1.2. Operation

The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value 0001H into the Timer Reload High and Low Byte registers and setting the prescale value to 1. Maximum time-out delay is set by loading the value 0000H into the Timer Reload High and Low Byte registers and setting the prescale value to 128. If the Timer reaches FFFFH, the timer rolls over to 0000H and continues counting. The timers can be configured to operate in different modes.

1.3. ONE-SHOT Mode

In ONE-SHOT mode, the timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Reload value, the timer generates an interrupt and the count value in the Timer High and Low Byte registers is reset to 0001H. Then, the timer is automatically disabled and stops counting.

Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state for one system clock cycle (from Low to High or from High to Low) upon timer Reload. If it is desired to have the Timer Output make a permanent state change upon One-Shot time-out, first set the TPOL bit in the Timer Control 1 Register to the start value before beginning ONE-SHOT mode. Then, after starting the timer, set TPOL to the opposite bit value.

Follow the steps below for configuring a timer for ONE-SHOT mode and initiating the count:

1. Write to the Timer Control 1 register to:

– Disable the timer

– Configure the timer for ONE-SHOT mode

– Set the prescale value

– If using the Timer Output alternate function, set the initial output level (High or Low).
2. Write to the Timer High and Low Byte registers to set the starting count value.
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
6. Write to the Timer Control 1 register to enable the timer and initiate counting In ONE-SHOT mode, the system clock always provides the timer input. The timer period is given by the following equation:

[image: image2.wmf](Hz)

Frequency

Clock

System

Prescale

Value)

Start

Value

(Reload

(s)

Period

Out

-

Time

Mode

SHOT

-

ONE

´

<

=

1.4. CONTINUOUS Mode

In CONTINUOUS mode, the timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) upon timer Reload.

Follow the steps below for configuring a timer for CONTINUOUS mode and initiating the count:

1. Write to the Timer Control 1 register to:

– Disable the timer

– Configure the timer for CONTINUOUS mode

– Set the prescale value

– If using the Timer Output alternate function, set the initial output level (High or Low).
2. Write to the Timer High and Low Byte registers to set the starting count value (usually 0001H), affecting only the first pass in CONTINUOUS mode. After the first timer Reload in CONTINUOUS mode, counting always begins at the reset value of 0001H.
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.

5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.

6. Write to the Timer Control 1 register to enable the timer and initiate counting.
In CONTINUOUS mode, the system clock always provides the timer input. The timer

period is given by the following equation:

[image: image3.wmf](Hz)

Frequency

Clock

System

Prescale

Value

Reload

(s)

Period

Out

-

Time

Mode

CONTINUOUS

´

=

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, the ONE-SHOT mode equation must be used to determine the first time-out period.

1.5. COUNTER Mode

In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer input is taken from the GPIO Port pin Timer Input alternate function. The TPOL bit in the Timer Control 1 Register selects whether the count occurs on the rising edge or the falling edge of the Timer Input signal. In COUNTER mode, the prescaler is disabled.

CAUTION: The input frequency of the Timer Input signal must not exceed one-fourth the system clock frequency.

Upon reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

Follow the steps below for configuring a timer for COUNTER mode and initiating the count:

1. Write to the Timer Control 1 register to:

– Disable the timer

– Configure the timer for COUNTER mode

– Select either the rising edge or falling edge of the Timer Input signal for the count. This also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function does not have to be enabled.
2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in COUNTER mode. After the first timer Reload in COUNTER mode, counting always begins at the reset value of 0001H. Generally, in COUNTER mode the Timer High and Low Byte registers must be written with the value 0001H.

3. Write to the Timer Reload High and Low Byte registers to set the Reload value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.

5. Configure the associated GPIO port pin for the Timer Input alternate function.

6. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.

7. Write to the Timer Control 1 register to enable the timer.

In COUNTER mode, the number of Timer Input transitions since the timer start is given by the following equation:

[image: image4.wmf]Value

Start

-

Value

Count

Current

s

Transition

Input

Timer

Mode

COUNTER

=

1.6. PWM Mode
In PWM mode, the timer outputs a Pulse-Width Modulator (PWM) output signal through a GPIO Port pin. The timer input is the system clock. The timer first counts up to the 16-bit PWM match value stored in the Timer PWM High and Low Byte registers. When the timer count value matches the PWM value, the Timer Output toggles. The timer continues counting until it reaches the Reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. If the TPOL bit in the Timer Control 1 register is set to 1, the Timer Output signal begins as a High (1) and then transitions to a Low (0) when the timer value matches the PWM value. The Timer Output signal returns to a High (1) after the timer reaches the Reload value and is reset to 0001H.
If the TPOL bit in the Timer Control 1 register is set to 0, the Timer Output signal begins as a Low (0) and then transitions to a High (1) when the timer value matches the PWM value. The Timer Output signal returns to a Low (0) after the timer reaches the Reload value and is reset to 0001H.

Follow the steps below for configuring a timer for PWM mode and initiating the PWM operation:

1. Write to the Timer Control 1 register to:

– Disable the timer

– Configure the timer for PWM mode

– Set the prescale value

– Set the initial logic level (High or Low) and PWM High/Low transition for the Timer Output alternate function

2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM mode. After the first timer reset in PWM mode, counting always begins at the reset value of 0001H. 3. Write to the PWM High and Low Byte registers to set the PWM value.

4. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM period). The Reload value must be greater than the PWM value.

5. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.

6. Configure the associated GPIO port pin for the Timer Output alternate function.

7. Write to the Timer Control 1 register to enable the timer and initiate counting.

The PWM period is given by the following equation:

[image: image5.wmf](Hz)

Frequency

Clock

System

Prescale

Value

Reload

(s)

Period

PWM

´

=

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, the ONE-SHOT mode equation must be used to determine the first PWM timeout period.

If TPOL is set to 0, the ratio of the PWM output High time to the total period is given by:

[image: image6.wmf]100

Value

Reload

Value

PWM

Value

Reload

(%)

Ratio

Time

High

Output

PWM

´

<

=

If TPOL is set to 1, the ratio of the PWM output High time to the total period is given by:

[image: image7.wmf]100

Value

Reload

Value

PWM

(%)

Ratio

Time

High

Output

PWM

´

=

1.7. CAPTURE Mode
In CAPTURE mode, the current timer count value is recorded when the desired external Timer Input transition occurs. The Capture count value is written to the Timer PWM High and Low Byte Registers. The timer input is the system clock. The TPOL bit in the Timer Control 1 register determines if the Capture occurs on a rising edge or a falling edge of the Timer Input signal. When the Capture event occurs, an interrupt is generated and the timer continues counting.

The timer continues counting up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer generates an interrupt and continues counting.

Follow the steps below for configuring a timer for CAPTURE mode and initiating the count:

1. Write to the Timer Control 1 register to:

– Disable the timer

– Configure the timer for CAPTURE mode.

– Set the prescale value.

– Set the Capture edge (rising or falling) for the Timer Input.

2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).

3. Write to the Timer Reload High and Low Byte registers to set the Reload value.

4. Clear the Timer PWM High and Low Byte registers to 0000H. This allows the software to determine if interrupts were generated by either a capture event or a reload. If the PWM High and Low Byte registers still contain 0000H after the interrupt, then the interrupt was generated by a Reload.

5. If desired, enable the timer interrupt and set the timer interrupt priority by writing the relevant interrupt registers.

6. Configure the associated GPIO port pin for the Timer Input alternate function.

7. Write to the Timer Control 1 register to enable the timer and initiate counting.

In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

[image: image8.wmf](Hz)

Frequency

Clock

System

Prescale

Value)

Start

Value

(Capture

(s)

Time

Elapsed

Capture

´

<

=

1.8. COMPARE Mode
In COMPARE mode, the timer counts up to the 16-bit maximum Compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Compare value, the timer generates an interrupt and counting continues (the timer value is not reset to 0001H). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) upon Compare. If the Timer reaches FFFFH, the timer rolls over to 0000H and continue counting.
Follow the steps below for configuring a timer for COMPARE mode and initiating the count:

1. Write to the Timer Control 1 register to:

– Disable the timer

– Configure the timer for COMPARE mode

– Set the prescale value

– Set the initial logic level (High or Low) for the Timer Output alternate function, if desired

2. Write to the Timer High and Low Byte registers to set the starting count value.

3. Write to the Timer Reload High and Low Byte registers to set the Compare value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.

5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.

6. Write to the Timer Control 1 register to enable the timer and initiate counting.

In COMPARE mode, the system clock always provides the timer input. The Compare time is given by the following equation:

[image: image9.wmf](Hz)

Frequency

Clock

System

Prescale

Value)

Start

Value

(Compare

(s)

Time

Mode

COMPARE

´

<

=

1.9. GATED Mode
In GATED mode, the timer counts only when the Timer Input signal is in its active state (asserted), as determined by the TPOL bit in the Timer Control 1 register. When the Timer Input signal is asserted, counting begins. A timer interrupt is generated when the Timer Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal deassertion generated the interrupt, read the associated GPIO input value and compare to the value stored in the TPOL bit.

The timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. When reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes (assuming the Timer Input signal is still asserted).

Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer reset.

Follow the steps below for configuring a timer for GATED mode and initiating the count:

1. Write to the Timer Control 1 register to:

– Disable the timer

– Configure the timer for GATED mode

– Set the prescale value

2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in GATED mode. After the first timer reset in GATED mode, counting always begins at the reset value of 0001H.

3. Write to the Timer Reload High and Low Byte registers to set the Reload value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.

5. Configure the associated GPIO port pin for the Timer Input alternate function.

6. Write to the Timer Control 1 register to enable the timer.

7. Assert the Timer Input signal to initiate the counting.

1.10. CAPTURE/COMPARE Mode

In CAPTURE/COMPARE mode, the timer begins counting on the first external Timer Input transition. The desired transition (rising edge or falling edge) is set by the TPOL bit in the Timer Control 1 Register. The timer input is the system clock.

Every subsequent desired transition (after the first) of the Timer Input signal captures the current count value. The Capture value is written to the Timer PWM High and Low Byte Registers. When the Capture event occurs, an interrupt is generated, the count value in the Timer High and Low Byte registers is reset to 0001H, and counting resumes. If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the Compare value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

Follow the steps below for configuring a timer for CAPTURE/COMPARE mode and initiating the count:

1. Write to the Timer Control 1 register to:

– Disable the timer

– Configure the timer for CAPTURE/COMPARE mode

– Set the prescale value

– Set the Capture edge (rising or falling) for the Timer Input

2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).

3. Write to the Timer Reload High and Low Byte registers to set the Compare value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.

5. Configure the associated GPIO port pin for the Timer Input alternate function.

6. Write to the Timer Control 1 register to enable the timer.

7. Counting begins on the first appropriate transition of the Timer Input signal. No interrupt is generated by this first edge.

In m/COMPARE mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

[image: image10.wmf](Hz)

Frequency

Clock

System

Prescale

Value)

Start

Value

(Capture

(s)

Time

Elapsed

Capture

´

<

=

1.11. Reading the Timer Count Values
The current count value in the timers can be read while counting (enabled). This capability has no effect on timer operation. When the timer is enabled and the Timer High Byte register is read, the contents of the Timer Low Byte register are placed in a holding register. A subsequent read from the Timer Low Byte register returns the value in the holding register. This operation allows accurate reads of the full 16-bit timer count value while enabled. When the timers are not enabled, a read from the Timer Low Byte register returns the actual value in the counter.
1.12. Timer Output Signal Operation
Timer Output is a GPIO Port pin alternate function. Generally, the Timer Output is toggled every time the counter is reloaded.

1.13. Timer 0-3 High and Low Byte Registers
The Timer 0-3 High and Low Byte (TxH and TxL) registers (see Table 1 and Table 2) contain the current 16-bit timer count value. When the timer is enabled, a read from TxH causes the value in TxL to be stored in a temporary holding register. A read from TMRL always returns this temporary register when the timers are enabled. When the timer is disabled, reads from the TMRL reads the register directly. Writing to the Timer High and Low Byte registers while the timer is enabled is not recommended. There are no temporary holding registers available for write operations, so simultaneous 16-bit writes are not possible. If either the Timer High or Low Byte registers are written during counting, the 8-bit written value is placed in the counter (High or Low Byte) at the next clock edge. The counter continues counting from the new value.

Table 1. Timer 0-3 High Byte Register (TxH)
[image: image11.png]BiTS 7 6 s 4 3

FIELD TH
RESET 0
R RW

[ADDR

FOBH, FI0H, F18H

Table 2. Timer 0-3 Low Byte Register (TxL)
[image: image12.png]BiTS 7 6 s 4 3

FIELD i
RESET 0
R RW

[aD0R FOTH, FOSH, F11H, FI9H

TH and TL—Timer High and Low Bytes. These 2 bytes, {TMRH[7:0], TMRL[7:0]}, contain the current 16-bit timer count value.
1.14. Timer Reload High and Low Byte Registers

The Timer 0-3 Reload High and Low Byte (TxRH and TxRL) registers (see Table 3 and Table 4) store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload High Byte register are stored in a temporary holding register. When a write to the Timer Reload Low Byte register occurs, the temporary holding register value is written to the Timer High Byte register. This operation allows simultaneous updates of the 16-bit Timer Reload value.

In COMPARE mode, the Timer Reload High and Low Byte registers store the 16-bit Compare value.

Table 3. Timer 0-3 Reload High Byte Register (TxRH)
[image: image13.png]BiTs 7 6 s 4 3

FIELD TRH
RESET 1
RW RAW

[ADDR FOZH, FOAH, F12H, F1AH

Table 4. Timer 0-3 Reload Low Byte Register (TxRL)
[image: image14.png]BiTs 7 6 s 4 3

FIELD TRL
RESET 1
RW RAW

[ADDR FORH, FOBH, F13H, F1BH

TRH and TRL—Timer Reload Register High and Low

These two bytes form the 16-bit Reload value, {TRH[7:0], TRL[7:0]}. This value sets the maximum count value which initiates a timer reload to 0001H. In COMPARE mode, these two byte form the 16-bit Compare value.
1.15. Timer 0-3 PWM High and Low Byte Registers

The Timer 0-3 PWM High and Low Byte (TxPWMH and TxPWML) registers (see Table 5 and Table 6) are used for Pulse-Width Modulator (PWM) operations. These registers also store the Capture values for the Capture and Capture/COMPARE modes.

Table 5. Timer 0-3 PWM High Byte Register (TxPWMH)
[image: image15.png]BiTs 7 6 s 4 3

FiELD P

RESET 0

RW RAW

[ADDR FO4H, FOCH, F14H, FICH

Table 6. Timer 0-3 PWM Low Byte Register (TxPWML)
[image: image16.png]BiTs 7 6 s 4 3

FIELD WhIL

RESET 0

RW RAW

[ADDR FOSH, FODH, F1sH, F1DH

PWMH and PWML—Pulse-Width Modulator High and Low Bytes. These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the current 16-bit timer count. When a match occurs, the PWM output changes state. The PWM output value is set by the TPOL bit in the Timer Control 1 Register (TxCTL1) register. The TxPWMH and xPWML registers also store the 16-bit captured timer value when operating in CAPTURE or CAPTURE/COMPARE modes.
1.16. Timer 0-3 Control 0 Registers

The Timer 0-3 Control 0 (TxCTL0) registers (see Table 7) allow cascading of the Timers.

Table 7. Timer 0-3 Control 0 Register (TxCTL0)
[image: image17.png]BiTs 7 6 s 4 3 2

FIELD Reserved csc Reserved

RESET 0

RW RW

[ADDR FOSH, FOEH, F16H, F1EH

CSC—Cascade Timers

0 = Timer Input signal comes from the pin.

1 = For Timer 0, Input signal is connected to Timer 3 output.

For Timer 1, Input signal is connected to Timer 0 output.

For Timer 2, Input signal is connected to Timer 1 output.

For Timer 3, Input signal is connected to Timer 2 output.
1.17. Timer 0-3 Control 1 Registers

The Timer 0-3 Control 1 (TxCTL1) registers (see Table 8) enable/disable the timers, set the prescaler value, and determine the timer operating mode.

Table 8. Timer 0-3 Control 1 Register (TxCTL1)
[image: image18.png]BiTs 7 6 4 3 1
FELD | TEN | TPOL PRES THODE
RESET 0

RW RAW

[ADDR

FO7H, FOFR, FI7H, FIFH

TEN—Timer Enable

0 = Timer is disabled.

1 = Timer enabled to count.

TPOL—Timer Input/Output Polarity

Operation of this bit is a function of the current operating mode of the timer.
ONE-SHOT mode.
When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

CONTINUOUS mode.
When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

COUNTER mode.
When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

0 = Count occurs on the rising edge of the Timer Input signal.

1 = Count occurs on the falling edge of the Timer Input signal.

PWM mode.
0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon Reload.

1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload.

CAPTURE mode

0 = Count is captured on the rising edge of the Timer Input signal.

1 = Count is captured on the falling edge of the Timer Input signal.

COMPARE mode

When the timer is disabled, the Timer Output signal is set to the value of this bit.

When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

GATED mode

0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on the falling edge of the Timer Input.

1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on the rising edge of the Timer Input.

CAPTURE/COMPARE mode

0 = Counting is started on the first rising edge of the Timer Input signal. The current count is captured on subsequent rising edges of the Timer Input signal.

1 = Counting is started on the first falling edge of the Timer Input signal. The current count is captured on subsequent falling edges of the Timer Input signal.
Caution: When the Timer Output alternate function TxOUT on a GPIO port pin is enabled, TxOUT will change to whatever state the TPOL bit is in. The timer does not need to be enabled for that to happen. Also, the Port data direction sub register is not needed to be set to output on TxOUT. Changing the TPOL bit with the timer enabled and running does not immediately change the TxOUT.

PRES—Prescale value. The timer input clock is divided by 2PRES, where PRES can be set from 0 to 7. The prescaler is reset each time the Timer is disabled. This insures proper clock division each time the Timer is restarted.

000 = Divide by 1

001 = Divide by 2

010 = Divide by 4

011 = Divide by 8

100 = Divide by 16

101 = Divide by 32

110 = Divide by 64

111 = Divide by 128
TMODE—TIMER mode

000 = ONE-SHOT mode

001 = CONTINUOUS mode

010 = COUNTER mode

011 = PWM mode

100 = CAPTURE mode

101 = COMPARE mode

110 = GATED mode

111 = CAPTURE/COMPARE mode
1.18. Watchdog Timer. Overview

The Watchdog Timer (WDT) helps protect against corrupt or unreliable software, power faults, and other system-level problems which may place the Z8 Encore! into unsuitable operating states. The Watchdog Timer includes the following features:

• On-chip RC oscillator.

• A selectable time-out response.

• WDT Time-out response: Reset or interrupt.

• 24-bit programmable time-out value.

1.19. Operation
The Watchdog Timer (WDT) is a retriggerable one-shot timer that resets or interrupts the 64K Series devices when the WDT reaches its terminal count. The Watchdog Timer uses its own dedicated on-chip RC oscillator as its clock source. The Watchdog Timer has only two modes of operation—ON and OFF. Once enabled, it always counts and must be refreshed to prevent a time-out. An enable can be performed by executing the WDT instruction or by setting the WDT_AO Option Bit. The WDT_AO bit enables the Watchdog Timer to operate all the time, even if a WDT instruction has not been executed. The Watchdog Timer is a 24-bit reloadable downcounter that uses three 8-bit registers in the eZ8 CPU register space to set the reload value. The nominal WDT time-out period is given by the following equation:

[image: image19.wmf]10

Value

Reload

WDT

(ms)

Period

out

-

Time

WDT

=

where the WDT reload value is the decimal value of the 24-bit value given by {WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator frequency is 10 kHz. The Watchdog Timer cannot be refreshed once it reaches 000002H. The WDT Reload Value must not be set to values below 000004H. Table 9 provides information on approximate time-out delays for the minimum and maximum WDT reload values.
Table 9. Watchdog Timer Approximate Time-Out Delays
[image: image20.png]WDT Reload Value

WDT Reload Value

‘Approximate Time-Out Delay
(with 10 kHz typical WDT oscillator frequency)

(Hex) (Decimal) Typical Description
4 00 s Winimurm time-out delay
FFFFFF 16, 167755 WMaimurm time out delay

1.20. Watchdog Timer Refresh
When first enabled, the Watchdog Timer is loaded with the value in the Watchdog Timer Reload registers. The Watchdog Timer then counts down to 000000H unless a WDT instruction is executed by the eZ8 CPU. Execution of the WDT instruction causes the downcounter to be reloaded with the WDT Reload value stored in the Watchdog Timer Reload registers. Counting resumes following the reload operation. When the 64K Series devices are operating in DEBUG Mode (through the On-Chip Debugger), the Watchdog Timer is continuously refreshed to prevent spurious Watchdog

Timer time-outs.

1.21. Watchdog Timer Time-Out Response
The Watchdog Timer times out when the counter reaches 000000H. A time-out of the Watchdog Timer generates either an interrupt or a Reset. The WDT_RES Option Bit determines the time-out response of the Watchdog Timer. For information on programming of the WDT_RES Option Bit, see Chapter Option Bits [1].

WDT Interrupt in Normal Operation. If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues an interrupt request to the interrupt controller and sets the WDT status bit in the Watchdog Timer Control register. If interrupts are enabled, the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address. After time-out and interrupt generation, the Watchdog Timer counter rolls over to its maximum value of FFFFFH and continues counting. The Watchdog Timer counter is not automatically returned to its Reload Value.

WDT Interrupt in STOP Mode. If configured to generate an interrupt when a time-out occurs and the 64K Series devices are in STOP mode, the Watchdog Timer automatically initiates a Stop Mode Recovery and generates an interrupt request. Both the WDT status bit and the STOP bit in the Watchdog Timer Control register are set to 1 following WDT time-out in STOP mode. For more information on Stop Mode Recovery, see Reset and Stop Mode Recovery [1]. If interrupts are enabled, following completion of the Stop Mode Recovery the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address.

WDT Reset in Normal Operation. If configured to generate a Reset when a time-out occurs, the Watchdog Timer forces the device into the Reset state. The WDT status bit in the Watchdog Timer Control register is set to 1. For more information on Reset, see Reset and Stop Mode Recovery [1].
WDT Reset in STOP Mode. If enabled in STOP mode and configured to generate a Reset when a time-out occurs and the device is in STOP mode, the Watchdog Timer initiates a Stop Mode Recovery. Both the WDT status bit and the STOP bit in the Watchdog Timer Control register are set to 1 following WDT time-out in STOP mode. Default operation is for the WDT and its RC oscillator to be enabled during STOP mode.

WDT RC Disable in STOP Mode. To minimize power consumption in STOP Mode, the WDT and its RC oscillator can be disabled in STOP mode. The following sequence configures the WDT to be disabled when the 64K Series devices enter STOP Mode following execution of a STOP instruction:

1. Write 55H to the Watchdog Timer Control register (WDTCTL).

2. Write AAH to the Watchdog Timer Control register (WDTCTL).

3. Write 81H to the Watchdog Timer Control register (WDTCTL) to configure the WDT and its oscillator to be disabled during STOP Mode. Alternatively, write 00H to the Watchdog Timer Control register (WDTCTL) as the third step in this sequence to reconfigure the WDT and its oscillator to be enabled during STOP Mode. This sequence only affects WDT operation in STOP mode.

1.22. Watchdog Timer Reload Unlock Sequence

Writing the unlock sequence to the Watchdog Timer (WDTCTL) Control register address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers. The follow sequence is required to unlock the Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) for write access.

1. Write 55H to the Watchdog Timer Control register (WDTCTL).

2. Write AAH to the Watchdog Timer Control register (WDTCTL).

3. Write the Watchdog Timer Reload Upper Byte register (WDTU).

4. Write the Watchdog Timer Reload High Byte register (WDTH).

5. Write the Watchdog Timer Reload Low Byte register (WDTL).

All steps of the Watchdog Timer Reload Unlock sequence must be written in the order just listed. There must be no other register writes between each of these operations. If a register write occurs, the lock state machine resets and no further writes can occur, unless the sequence is restarted. The value in the Watchdog Timer Reload registers is loaded into the counter when the Watchdog Timer is first enabled and every time a WDT instruction is executed.

1.23. Watchdog Timer Control Register Definitions

Watchdog Timer Control Register. The Watchdog Timer Control (WDTCTL) register, detailed in Table 10, is a Read-Only register that indicates the source of the most recent Reset event, indicates a Stop Mode Recovery event, and indicates a Watchdog Timer time-out. Reading this register resets the upper four bits to 0. Writing the 55H, AAH unlock sequence to the Watchdog Timer Control (WDTCTL) register address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers.
Table 10. Watchdog Timer Control Register (WDTCTL)
[image: image21.png]BITS 7 6 4
FELD | POR | stop EXT Nl
RESET

RW R

ADDR FFOH

[image: image22.png]Reset or Stop Mode Recovery Event POR_STOP WDT EXT
or-On Resel T 001
eTusing RESET pin asserii G0 o0 1

using Watchdog Timer fime-out 00 1o
Using Ihe On-Chip Debugger OCDCTLTsel b 1000
el irom STOP Wode using DG Pin driven Lt 7001
01 0o

7110

POR—Power-On Reset Indicator. If this bit is set to 1, a Power-On Reset event occurred. This bit is reset to 0 if a WDT timeout or Stop Mode Recovery occurs. This bit is also reset to 0 when the register is read.

STOP—Stop Mode Recovery Indicator. If this bit is set to 1, a Stop Mode Recovery occurred. If the STOP and WDT bits are both set to 1, the Stop Mode Recovery occurred due to a WDT time-out. If the STOP bit is 1 and the WDT bit is 0, the Stop Mode Recovery was not caused by a WDT time-out. This bit is reset by a Power-On Reset or a WDT time-out that occurred while not in STOP mode. Reading this register also resets this bit.

WDT—Watchdog Timer Time-Out Indicator. If this bit is set to 1, a WDT time-out occurred. A Power-On Reset resets this pin. A Stop Mode Recovery from a change in an input pin also resets this bit. Reading this register resets this bit.

EXT—External Reset Indicator. If this bit is set to 1, a Reset initiated by the external RESET pin occurred. A Power-On Reset or a Stop Mode Recovery from a change in an input pin resets this bit. Reading this register resets this bit.
Reserved. These bits are reserved and must be 0.

SM—STOP Mode Configuration Indicator

0 = Watchdog Timer and its internal RC oscillator will continue to operate in STOP Mode.

1 = Watchdog Timer and its internal RC oscillator will be disabled in STOP Mode.
1.24. Watchdog Timer Reload Upper, High and Low Byte Registers

The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) registers (see Table 11 through Table 13) form the 24-bit reload value that is loaded into the Watchdog Timer when a WDT instruction executes. The 24-bit reload value is {WDTU[7:0], WDTH[7:0], WDTL[7:0]}. Writing to these registers sets the desired Reload Value. Reading from these registers returns the current Watchdog Timer count value.
Caution: The 24-bit WDT Reload Value must not be set to a value less than 000004H.
Table 11. Watchdog Timer Reload Upper Byte Register (WDTU)
[image: image23.png]BITS| 7 3 5 4 3 2
FIELD Woru

RESET [

RIW R

[ADDR PRI

Note: RVY" - Read rarns he currant WDT count valus. Wil sels he desied Reload Value.

WDTU—WDT Reload Upper Byte. Most significant byte, Bits[23:16], of the 24-bit WDT reload value.
Table 12. Watchdog Timer Reload High Byte Register (WDTH)
[image: image24.png]BITS 7 6 5 4 3 2
FIELD WTH

RESET 1

RIW R

[ADDR Fr2n

Note: RAVY" - Read ralurns e current WDT count value, Wrks sl the desied Reload Value.

WDTH—WDT Reload High Byte, Middle byte, Bits[15:8], of the 24-bit WDT reload value.

Table 13. Watchdog Timer Reload Low Byte Register (WDTL)
[image: image25.png]BiITS 7 6 5 4 3 2

FIELD WoTL
RESET 1
RW R

ADDR FFaH

Note: RAW" - Raad ratums the current WDT court valus. Wile sets the desired Relcad Value.

WDTL—WDT Reload Low. Least significant byte, Bits[7:0], of the 24-bit WDT reload value.

2. PRELIMINARY WORK

Carefully learn information on programming of different timer’s modes and examples of timers programming.
First week experiment. To make experiments with the timers the same input – output devices of the developing board will be used (see Manual Experiment 6, Figure 2). The CONTINUOUS Mode on the base of Timer 0 will be studied. If the microprocessor pin PA1_T0OUT is in alternate state, the timer’s output is connected to Yellow LED. This LED will be used to observe timers work. To realize experiment, follow next steps:
(a). Initiate Output GPIO PA0 in alternate mode.

(b). Configure Timer 1 following 1.4. CONTINUOUS MODE description.

(c). Initiate start of timer and observe blinking of the LED.
(d). Change Prescale Value stored in Control 1 Register (TxCTL1) and supervise result.

(e). To change LED’s blinking frequency, store another information in TxH, TxL, TxRH and TxRL registers.
Read the code and explanations given below carefully to accomplish the experiment!
	PAADDR EQU FD0H

PACTL EQU FD1H

T0H EQU F00H

T0L EQU F01H

T0RH EQU F02H

T0RL EQU F03H

T0PWMH EQU F04H

T0PWML EQU F05H

T0CTL0 EQU F06H

T0CTL1 EQU F07H

WDTCTL EQU FF0H

WDTU EQU FF1H

WDTH EQU FF2H

WDTL EQU FF3H

VECTOR RESET = start

start:

SRP #23h

; Configuring timer settings using prescale = 7 (111b), Reload Value = FFFFH

; FFFFh x 2^7 / 18.432M = 0.455sec

LDX T0CTL1, #00111001b
; Disable timer, TPOL = 0, PRESCALE = 111h, TMODE = Continuous

LDX T0H, #%00
; Timer Starting Value = 0001H

LDX T0L, #%01
; High = 00H, Low = 01H

LDX T0RH, #%FF
; Timer Reload Value = FFFFH

LDX T0RL, #%FF
; High = FFH, Low = FFH

LDX PAADDR, #%02
; Modify alternate function settings of PORTA

LDX PACTL, #%02
; Use alternate function of PA1

ORX T0CTL1, #%80
; Enable timer

loop:

JP loop

STOP

The example code above simply configures Timer 0, sets the timing mode as “Continuous mode”. The program also configures PORTA to observe the timer output. Note that PA1 (Port A bit1) can be also used to observe output of Timer 0. In order to do this, PA1 should be set to alternate function mode. Once the port and timer settings are done, the led will blink automatically even if there is an infinite loop at the end of the code, since the 2nd bit of PORTA is connected to output of Timer 0 inside the microprocessor. Remember that 2nd bit of PORTA is connected to yellow LED on the board. In this code, Timer 0 CTL1 register is set to #00111001b. First bit (0) disables the timer. Second bit (0) sets the initial timer output to 0. Next three bits (111) are the prescale value. The code sets the prescale value to “111” which divides system clock by 27, (1112 = 710) and finally last three bits (001) select the timer mode (continuous mode). Then, timer starting value (counter initialization value) is set to 1 (0001h) which consists of 16 bits and should be set with two steps (high and low part) as well as timer reload value. In continuous mode, counter will count up to timer reload value that is set to FFFFh in this code. After configuring the timer, PORTA is configured to show the LED output. Here we set the alternate function settings of PORTA to 02h = 00000010b to use the alternate function of 2nd bit of Port A. After all settings are done, we enable the timer and set an infinite loop.

Second week experiment. Learn information on Watchdog Timer programming. Design a program that shows its operation according the following description.

(a). Analyze and run the bit rotate example and observe the incorrect shifting light effect.
(b). Analyze instructions to initiate Watchdog Timer (WDT) according instructions on this manual.

(c). Calculate time intervals to realize next cases:

-
[image: image26.wmf](ms)

Period

out

-

Time

WDT

> Program Period (Period of the LED’s blinking is regular).

-
[image: image27.wmf](ms)

Period

out

-

Time

WDT

< Program Period (Period of the LED’s blinking interrupts, because RESTART signal from Watchdog Timer reinitializes execution of the program).

(d). Modify Watchdog Timer to realize the correct shifting light effect.
(e). Modify the delay function to realize the correct shifting light effect.
	PAADDR EQU FD0H

PACTL EQU FD1H

PAOUT EQU FD3H

T0H EQU F00H

T0L EQU F01H

T0RH EQU F02H

T0RL EQU F03H

T0PWMH EQU F04H

T0PWML EQU F05H

T0CTL0 EQU F06H

T0CTL1 EQU F07H

WDTCTL EQU FF0H

WDTU EQU FF1H

WDTH EQU FF2H

WDTL EQU FF3H

VECTOR RESET = start

start:

srp #%10

; Configure watch dog timer

; Unlock wdt reload register

ldx WDTCTL, #%55

ldx WDTCTL, #%AA

; Configure wdt reload registers (0.4sec => wdt=4000=0FA0h)

ldx WDTU, #%00

ldx WDTH, #%0F

ldx WDTL, #%A0

; Enable wdt

wdt

; Configure port A to all output

ldx PAADDR, #%01

ldx PACTL, #%00
;All output

mainloop:

; bit rotate job (delay x 3) seconds

ld r0, #11111110b

innerloop:

ldx PAOUT, r0

call delay

cp r0, #11111011b

jr eq, refreshwdt

rl r0

jp innerloop

; refresh wdt

refreshwdt:

wdt

jp mainloop

stop

delay:
; Counts up to 06ffff to delay

push r0
; Save register state

push r1

push r2

ld r0, #0

ld r1, #0

ld r2, #0

loop:

add r0, #1

adc r1, #0

adc r2, #0

cp r2, #%06

jr ne, loop

cp r1, #%FF

jr ne, loop

cp r0, #%FF

jr ne, loop

pop r2
; load register state

pop r1

pop r0

ret

3. EXPERIMENTAL WORK
First week experiment. Experimentally check prepared program to analyze work of the Timer in CONTINUOUS Mode.
Second week experiment. Debug program to analyze operation of Watchdog Timer and changing parameters reach visible effect of applying of internal reset signal from WDT.

Demonstrate each your results to instructor.
4. RESULTS AND CONCLUSIONS
Explain obtained results, write your explanations of experiments. Add codes of all designed program in laboratory experiments report.

5. SELF TEST QUESTIONS
5.1. What is meant by the term set when applied to a control bit?
5.2. What is meant by the term clear when applied to a control bit?
5.3. In order turn on the LED on the Evaluation Board, which instructions do we use?
5.4. Why do we express execution time in cycles rather than in divisions of seconds?
5.5. What effect does the instruction NOP have?
5.6. Why are timing cycles important for real-time programming?
5.7. What is meant by the term port when applied to microprocessor hardware?
5.8. What is the problem in using time delays for controlling the time between events?
5.9. What is a pre-scaler?
5.10. What is meant by the term period when applied to a timer?
REFERENCES

1. Product Specification, High Performance 8-Bit Microcontrollers, Z8 Encore!® 64K Series, PS019908-0404.

2. ZiLOG Developer Studio II – Z8 Encore!(, User Manual, UM013026 – 0105

3. Andrew Batman, Iain Paterson-Stephens, The DSP Handbook, Pearson Education, 2002, p.665.
17

_1257249910.unknown

_1257250623.unknown

_1257254010.unknown

_1258549050.unknown

_1258549079.unknown

_1258545200.unknown

_1257251343.unknown

_1257250080.unknown

_1257248688.unknown

_1257249712.unknown

_1257248345.unknown

